

MODELACIÓN FINANCIERA Y COTIZACIÓN DE REASEGURO

Noviembre, 2023

A business of Marsh McLennan

Capacitación en Modelación Financiera

... enfocado a la cotización de reaseguro

¿Qué es un modelo financiero y cómo lo construimos?

Resultados del modelo financiero

Cotización de reaseguro y distribución de costes

¿Qué es un modelo financiero y cómo lo construimos?

¿Qué es la modelación financiera y para qué la estamos utilizando?

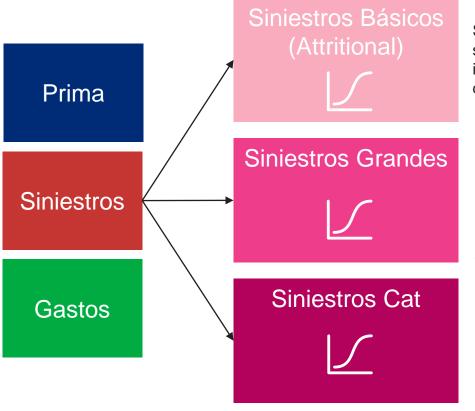
- ✓ Estamos tratando de construir una representación de una situación financiera del mundo real.
- ✓ En este caso, la situación financiera y el rendimiento de nuestros clientes.
- ✓ Y estamos intentando crear un pronóstico de los resultados futuros del cliente en ciertas circunstancias.
- ✓ Por lo general, utilizamos información del pasado y del presente para pronosticar el futuro.

Nuestros clientes son compañías de (rea)seguros, por lo que la base de nuestra modelación financiera es el resultado financiero de sus operaciones de seguros / cartera de seguros.

Esto se denomina en general el resultado de suscripción. (A veces también se le llama resultado operativo o utilidad).

Resultado de Suscripción

(Utilidad o Resultado Operativo)


- ¿Cuáles son los ingresos de una compañía de (rea)seguros?
- ¿Qué gastos tiene una compañía de (rea)seguros?

- ✓ Estamos simulando el estado de resultados de nuestros clientes y calculando el beneficio (o pérdida) esperado para un período dado (generalmente el próximo año de suscripción, con una vista de 12 meses) y bajo circunstancias determinadas.
- Esto ayuda a nuestros clientes a tomar decisiones estratégicas basadas en el impacto financiero esperado que tendrán.
- ✓ En muchos casos, los ayudamos a tomar decisiones sobre su compra de reaseguro, pero nuestra modelación financiera también los ayuda con decisiones de suscripción. Nos permite someter a pruebas de estrés ciertos escenarios y tener en cuenta requisitos regulatorios y de calificación, entre otros.

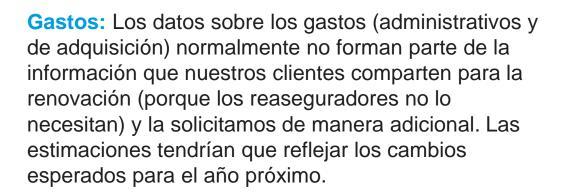
¿Qué pasa con los siniestros?

Siniestros pequeños y frecuentes que simulamos en agregado y no individualmente. En general, utilizamos una distribución lognormal para simularlos.

Siniestros individuales grandes por encima de un cierto monto (umbral), que son simulados en nuestro modelo de manera individual. Para establecer los parámetros de la distribución de pérdidas grandes, tenemos dos métodos: basados en experiencia o en exposición.

Representan eventos, que generalmente se refieren a eventos NatCat o SRCC en propiedad. Si existe un modelo Cat entonces utilizaremos los resultados del modelo Cat para simularlos en nuestro modelo (RMS, AIR, ERN).

¿Por qué no utilizamos información histórica de sinjestros?


- La idea general es incluir distribuciones de siniestros para todos los tipos de siniestros que podrían ocurrir en la cartera subyacente.
- ✓ Para cada tipo de riesgo alimentamos al modelo con una distribución de severidad y una de frecuencia con información sobre la media (esperanza o promedio) y la desviación estándar (desviación posible del siniestro esperado).
- La distribución de severidad proporciona información sobre el posible tamaño de los Siniestros.
- ✓ La distribución de frecuencia proporciona información sobre el número de siniestros o qué tan seguido podría ocurrir un siniestro de cierto tamaño.
- Dividir los siniestros no cat en dos distribuciones permite modelar de forma más certera y ayuda con la velocidad de las simulaciones.

¡Un dato interesante!

Los Reaseguradores usan la misma estructura en los modelo que utilizan para simular la rentabilidad de un contrato de reaseguro (una pequeña parte del modelo más grande que estamos construyendo). Una vez que aplicamos los términos y estructura de reaseguro al modelo, podemos ver lo que el reasegurador está viendo – considerando que estamos utilizando la misma información para obtener los supuestos

Prima y Gastos

Prima: en nuestros modelos normalmente utilizamos la prima estimada para el próximo año contractual (EPI), pues tratamos de aconsejar al cliente sobre la estrategia para la próxima renovación.

Necesitamos esta información, especialmente la prima, en una granularidad que nos deje modelar términos de reaseguro con más precisión y nos proporcione los resultados que nos gustaría extraer.

Prima y Gastos

Compañía	EPI 2024 Propiedad	EPI 2024 Motor	EPI 2024 Misceláneos	Índice de Gastos
Columna	202,900	3,180,962	1,533,915	30%
Coopseguros	1,728,271	6,175,391	777,955	30%
Equidad	2,494,830	1,472,573	776,953	30%
Fedpa	606,736	13,981,731	488,667	30%
Futuro	595,298	3,804,615	906,337	30%
Тају	527,455	14,065,863	1,549,877	30%
Total	6,155,490	42,681,135	6,033,704	30%

Siniestros - Siniestros Catastróficos

Siniestros cat: para un portafolio de propiedad, el equipo de modelación catastrófica nos proporcionan distribuciones de siniestros con diferentes modelos catastróficos y sus diferentes versiones. El modelo (RMS, AIR) y la versión (v.18, v.22 DLM, ALM etc.) que usamos depende del objetivo de nuestro ejercicio de modelación y la visión de riesgo del cliente. Podemos combinar modelos en MetaRisk y también aplicar factores de escala para compensar las exposiciones que no se habían modelado.

Tenemos que aplicar estructuras de reaseguro por riesgo en los modelos catastróficos, y dividir los ELDs en diferentes perspectivas financieras!

Podemos importar resultados (formato de archivo se llama ELD = ELT) de los modelos principales como RMS, AIR y ERN.

También podemos importar distribuciones de modelos de CAT como OEPs, AEPs, YLTs, CLFs, en algunos casos estos se proporcionan por un cliente o reasegurador, pero preferimos utilizar ELDs porque nos permiten mayor flexibilidad y precisión.

Para perdidas de eventos que no son NatCAT, normalmente usamos distribuciones con cola larga, como la Pareto.

Vista de riesgo: RMS v.22

			Terremoto				Hui	racán	
GNoF	Equidad	Columna	Futuro	Coopseguros	Fedpa	Equidad	Columna	Coopseguros	Fedpa
GNoF SI	691,524,530	89,718,134	149,345,806	415,561,002	181,988,823	691,524,530	89,718,134	415,561,002	181,988,823
GNoF	Equidad	Columna	Futuro	Coopseguros	Fedpa	Equidad	Columna	Coopseguros	Fedpa
Return Period	l								
Occurrence Ex	ceedance Probab	oility (OEP)							
5,000	44,986,939	8,540,865	14,957,350	72,521,428	10,611,451	32,859,362	723,363	76,371,748	3,823,991
1,500	29,161,524	6,106,075	11,857,111	64,116,628	7,400,230	16,892,840	209,567	50,003,933	1,288,147
1,000	23,774,688	5,318,450	10,778,417	60,640,780	6,396,809	13,305,087	122,964	43,539,681	739,000
500	16,190,500	4,040,761	8,857,636	53,247,974	4,765,373	8,494,616	39,599	33,670,052	157,571
250	10,527,958	2,890,158	6,805,350	42,184,132	3,308,743	5,157,842	7,325	24,774,211	3,520
200	9,050,148	2,554,974	6,112,134	37,078,406	2,895,548	4,299,956	3,374	22,079,768	230
100	5,422,768	1,644,496	3,929,848	20,713,412	1,816,852	2,137,023	52	14,337,250	1
50	3,000,512	951,889	2,149,064	8,898,100	1,037,342	734,329	0	7,964,924	0
25	1,414,545	475,625	1,037,534	1,968,079	522,169	103,890	0	3,468,906	0
20	1,045,892	364,998	789,675	1,130,582	403,152	37,075	0	2,450,988	0
10	319,349	134,908	275,186	88,246	152,455	17	0	512,977	0
5	60,999	34,582	54,441	43	39,878	1	0	9,693	0
2	22	1,035	1,187	0	743	0	0	0	0
AAL	276,212	86,966	185,752	666,713	98,149	90,173	708	605,356	3,493
StdDv	1,684,028	401,928	850,996	4,526,888	475,970	1,102,846	33,839	3,557,135	151,657

Siniestros - Siniestros Grandes

Umbral de Siniestros Grandes: monto a partir del cual una pérdida se considera grande.

Retención Neta Máxima: monto máximo para siniestros grandes.

Dos métodos para determinar la distribución de siniestros grandes:

Experiencia: utilizando la historia de siniestros grandes. Los siniestros están indexados y posiblemente desarrollados. Ajustamos distribuciones paramétricas a la frecuencia y severidad de la experiencia de siniestros utilizando MetaRisk Fit.

Exposición: Cuando no tenemos experiencia suficiente de siniestros, utilizamos información de la exposición (usualmente en forma de perfiles de riesgo) y asumimos una siniestralidad promedio para calibrar una distribución de pérdidas predefinida. Las distribuciones de exposición predefinidas mas conocidas son las curvas de Swiss Re y Lloyds.

Es posible combinar ambos métodos!

Distribución de Siniestros Grandes

Para Propiedad, no existe suficiente experiencia de siniestros grandes para ajustar una distribución paramétrica, pero sí en Autos y Misceláneos.

En Propiedad, hemos decidido utilizar sus perfiles de riesgo para ajustar una distribución por exposición y para el resto de ramos hemos combinado una distribución paramétrica con otra por exposición.

El umbral de siniestros grandes que hemos utilizado es USD 25K para propiedad y USD 10K para el resto.

Siniestros – Siniestros Básicos

Siniestros básicos: pérdidas de montos pequeños con mucha frecuencia, que se encuentran debajo de un límite determinado. Si conocemos la siniestralidad no catastrófica y el umbral de siniestros grandes, podemos calcular los siniestros básicos y utilizar distribuciones como Lognormal / Poisson para modelarlos.

Estadísticas: la siniestralidad no cat se calcula normalmente a partir de las estadísticas del cliente. Deben corresponder con los siniestros incurridos (desarrollados o excluyendo años incompletos) y deben excluir las pérdidas por eventos catastróficos. Se deben considerar las tendencias de la cartera, excluir o escalar los años atípicos, etc., para reflejar una predicción realista para el próximo año.

Distribuciones de siniestros básicos

Siniestralidad Incurrida - Propiedad

Year	Columna	Coopseguros	Equidad	Fedpa	Futuro	Тају
2015	5%	33%	5%	1%	19%	23%
2016	1%	1%	18%	7%	5%	30%
2017	13%	7%	5%	2%	1%	80%
2018	2%	2%	5%	19%	7%	13%
2019	-6%	3%	4%	3%	7%	200%
2020	8%	2%	31%	4%	9%	71%
2021	3%	3%	4%	3%	5%	25%
2022	47%	3%	0%	0%	8%	0%
Promedio	11%	7%	10%	5%	8%	63%

Siniestralidad Incurrida - Motor

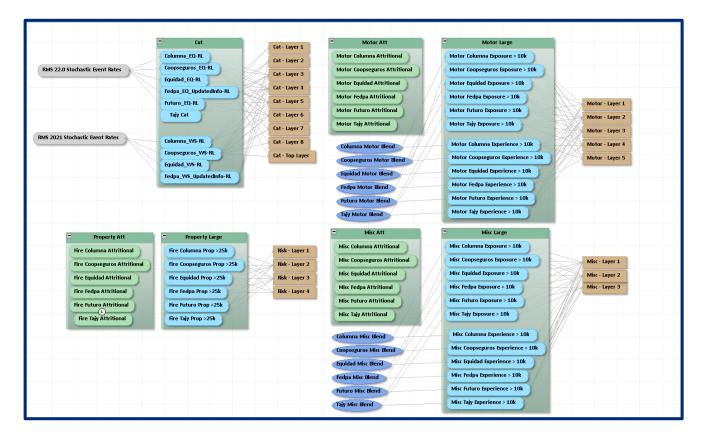
Year	Columna	Coopseguros	Equidad	Fedpa	Futuro	Тају
2015	58%	39%	76%	96%	54%	56%
2016	87%	56%	64%	78%	72%	61%
2017	68%	52%	63%	80%	64%	48%
2018	87%	52%	57%	69%	71%	61%
2019	90%	66%	71%	61%	79%	53%
2020	63%	34%	49%	47%	50%	70%
2021	87%	33%	48%	66%	71%	55%
2022	89%	17%	0%	51%	62%	0%
Promedio	79%	47%	61%	71%	66%	58%

Resultados del modelo financiero...

Resultados del Modelo Bruto

Resumen de Siniestros Brutos - USD

					_			Basic		Large			Cat	
	Return Period	Gross Loss Ratio	Gross Combined Ratio	Gross UW Result	Gross Premium	Gross Expenses	Total Annual Gross Loss	Annual Gross Loss	Annual Gross Loss	Maximum Gross Loss	Number of Losses	Annual Gross Loss	Maximum Gross Loss	Number of Losses
Mean		55%	80%	11,178,867	54,870,331	13,717,583	29,973,882	20,920,325	7,052,684	481,684	289	2,000,872	1,799,817	9
Std.Dev		13%	13%	6,918,735	0	0	6,918,735	1,016,516	2,986,081	441,786	95	6,155,060	5,843,671	3
	1,500	41%	66%	18,440,505	54,870,331	13,717,583	22,712,244	17,944,794	3,208,984	67,505	182	0	0	1
	1,000	42%	67%	18,312,613	54,870,331	13,717,583	22,840,135	18,042,218	3,275,961	69,440	184	0	0	1
	500	42%	67%	18,047,154	54,870,331	13,717,583	23,105,594	18,209,773	3,383,373	74,838	187	0	0	1
Φ	250	43%	68%	17,771,258	54,870,331	13,717,583	23,381,490	18,411,397	3,504,124	83,687	191	0	0	2
Favourable	100	43%	68%	17,346,036	54,870,331	13,717,583	23,806,713	18,688,485	3,693,237	98,330	196	4	4	2
odr	50	44%	69%	16,976,843	54,870,331	13,717,583	24,175,905	18,931,563	3,859,896	110,856	201	75	63	3
ă	20	45%	70%	16,395,465	54,870,331	13,717,583	24,757,283	19,301,243	4,134,771	134,136	208	1,147	888	4
	10	46%	71%	15,834,705	54,870,331	13,717,583	25,318,043	19,639,473	4,408,181	163,507	215	5,517	4,103	5
	5	48%	73%	15,059,349	54,870,331	13,717,583	26,093,399	20,060,417	4,808,939	225,042	224	24,025	17,400	6
	4	48%	73%	14,729,837	54,870,331	13,717,583	26,422,911	20,222,878	4,991,622	254,928	227	38,872	28,140	6
	2.5	50%	75%	13,742,135	54,870,331	13,717,583	27,410,613	20,633,309	5,573,695	313,053	238	123,208	90,931	8
	2	51%	76%	12,962,622	54,870,331	13,717,583	28,190,127	20,888,293	6,042,713	372,089	247	237,439	179,140	8
	2.5	53%	78%	11,951,787	54,870,331	13,717,583	29,200,962	21,147,701	6,622,222	426,190	262	446,837	345,221	9
	4	57%	82%	9,826,358	54,870,331	13,717,583	31,326,390	21,587,453	8,469,938	524,797	325	1,205,292	974,381	11
	5	59%	84%	8,927,172	54,870,331	13,717,583	32,225,576	21,764,285	9,347,539	591,952	344	1,756,243	1,458,346	11
4)	10	65%	90%	5,734,373	54,870,331	13,717,583	35,418,376	22,239,448	10,971,690	899,143	454	4,525,482	3,930,888	13
gg	20	73%	98%	1,183,301	54,870,331	13,717,583	39,969,447	22,644,836	12,547,049	1,214,187	501	9,426,790	8,495,717	14
n in	50	89%	114%	-7,448,574	54,870,331	13,717,583	48,601,322	23,117,438	15,992,413	1,993,935	569	19,960,673	18,667,003	16
avc	100	109%	134%	-18,861,270	54,870,331	13,717,583	60,014,018	23,429,885	18,230,206	2,533,091	604	31,526,687	29,711,645	17
Unfavourable	200	133%	158%	-32,021,563	54,870,331	13,717,583	73,174,311	23,705,834	19,723,664	2,911,381	632	45,016,576	43,338,780	18
	250	141%	166%	-35,948,526	54,870,331	13,717,583	77,101,274	23,797,258	20,177,185	3,014,848	641	48,939,582	47,010,805	18
	500	158%	183%	-45,711,196	54,870,331	13,717,583	86,863,944	24,068,705	21,633,042	3,997,927	672	58,952,521	57,025,501	19
	1,000	173%	198%	-53,950,519	54,870,331	13,717,583	95,103,267	24,346,546	23,036,208	4,658,775	702	66,621,348	64,268,596	20
	1,500	180%	205%	-57,847,662	54,870,331	13,717,583	99,000,411	24,481,822	23,684,836	4,798,883	714	70,626,728	67,953,559	21


Aplicando Estructuras de Reaseguro

Programa de Reaseguro Actual Grupo LARG

Grupo LARG actualmente compra cuatro programas de reaseguro:

- Exceso de pérdida catastrófico cubre a todas las compañías, cada una con un deducible y límite diferente, dependiendo de sus necesidades y exposición a terremotos y huracanes.
- Exceso de pérdida por riesgo para propiedad cubre a todas las compañías, con una primera capa para Futuro.
- Exceso de pérdida por riesgo para autos cubre a todas las compañías con una primera capa para Coopseguros, Equidad y Futuro.
- Exceso de pérdida por riesgo para misceláneos cubre a todas las compañías en tan solo tres capas, donde la primera excluye a Tajy.

Resultados Netos

Impacto en Rentabilidad y Capital en Riesgo - USD

	Grupo L	ARG 2023	
	Bruto	2023 FOTs	
Prima Bruta	54,870,331	54,870,331	
Prima Cedida	0	4,502,922	-
Proporcional	0	0	
No-Prop excl. Reinstalaciones	0	4,241,160	> Ingresos
Reinstalaciones	0	85,590	
Prima Neta	54,870,331	50,367,409	
Siniestros Brutos	29,973,882	29,973,882	_
Siniestros Cedidos	0	3,246,396	
Proporcional	0	0	
No-Proporcional	0	3,107,039	_
Siniestros Netos	29,973,882	26,727,485	Gastos
			Gustos
Gastos Brutos	13,717,583	13,717,583	_
Comisiones (incl. PC)	0	0	
Gastos Netos	13,717,583	13,717,583	_
Resultado de Suscripción Promedio	11,178,867	9,922,341	Resultado de Suscripción
Valor en Riesgo 1 en 200	32,021,563	5,062,593	
Costo de Capital (10%)	3,202,156	506,259	_
Resultado Económico	7,976,710	9,416,082	

		Grupo L <i>A</i>	ARG 2023
	Return Period	Bruto	2023 FOTs
Mean		11,178,867	9,922,341
Std.Dev		6,918,735	3,523,588
	1,500	18,440,505	14,839,911
	1,000	18,312,613	14,719,908
	500	18,047,154	14,530,949
<u>o</u>	250	17,771,258	14,284,703
Favourable	100	17,346,036	13,940,290
Ď	50	16,976,843	13,635,655
Š	20	16,395,465	13,166,017
щ	10	15,834,705	12,722,543
	5	15,059,349	12,146,348
	4	14,729,837	11,914,537
	2.5	13,742,135	11,268,647
	2	12,962,622	10,809,437
	2.5	11,951,787	10,258,329
	4	9,826,358	8,820,553
	5	8,927,172	8,034,717
<u>o</u>	10	5,734,373	6,257,739
ab	20	1,183,301	4,575,534
ב	50	-7,448,574	527,570
N N	100	-18,861,270	-1,991,300
Jnfavourable	200	-32,021,563	-5,062,593
D	250	-35,948,526	-6,352,824
	500	-45,711,196	-13,072,543
	1,000	-53,950,519	-21,163,233
	1,500	-57,847,662	-24,620,957

Ejemplo Aplicación: Agotamiento del Límite Agregado

Resultados por Contrato y Capa

Periodo de retorno de agotamiento del LAA

Сара	CatXL	RiskXL	MotorXL Expo/Expe	Motor XL Expe	MiscXL
L1	2,273	100,000	19	100,000	1,293
L2	1,071	30,000	4	9	19
L3	135	99,999	30	27	15,000
L4	1,167	100,000	80	72	
L5	9,677		284	261	
L6	100,000				
L7	100,000				
L8	13,043				

Probabilidad de agotamiento del LAA

Layer	CatXL	RiskXL	MotorXL Expo/Expe	Motor XL Expe	MiscXL
L1	0.04%	0.00%	5.14%	0.00%	0.08%
L2	0.09%	0.00%	25.10%	11.07%	5.13%
L3	0.74%	0.00%	3.35%	3.68%	0.01%
L4	0.09%	0.00%	1.25%	1.38%	
L5	0.01%		0.35%	0.38%	
L6	0.00%				
L7	0.00%				
L8	0.01%				

- ✓ En sus contratos de propiedad (CatXL y RiskXL) observamos que las probabilidades de que se agoten sus límites agregados son muy bajas en todas las capas. Quizás sería recomendable explorar un aumento en la tercera capa del Cat.
- ✓ En Autos hemos desarrollado dos versiones del modelo, una basada exclusivamente en la experiencia histórica de siniestros y otra utilizando también la exposición (perfiles de riesgo). En este contrato podríamos explorar aumentar el límite en las capas intermedias, teniendo en cuenta el posible incremento en el costo.
- ✓ El contrato de misceláneos tan solo presenta una probabilidad más baja de agotamiento del LAA en la segunda capa, donde podría explorarse un aumento de capacidad.

Cotización de Reaseguro y Distribución de Costes

Cotización de un contrato de (rea)seguros

Principios y metodologías

Precio de un contrato de (rea)seguros

Margen de beneficios

Recargo por costes de reaseguro

Margen de contingencia / recargo por volatilidad

Recargo por costes de capital

Recargo por costes administrativos y adquisición

Siniestros que la (rea)seguradora espera tener durante la vigencia de la póliza

- Análisis de Burning Cost: consiste en utilizar los siniestros históricos de una cartera y los límites/deducibles del contrato de (rea)seguro que se desea cotizar. A cada siniestro se le aplican los términos del contrato y se toma el promedio de un determinado número de años. Esta metodología se basa en que la experiencia pasada constituye una buena guía para predecir el futuro. Los siniestros se han de ajustar por inflación y desarrollo (particularmente los ramos de cola larga, como RC). Esta metodología solo es válida cuando exista un gran número siniestros pasados afectando el programa.
- ✓ Curvas de exposición: se basa en curvas de mercado (construidas a partir de la experiencia de toda la industria), un perfil de riesgos, una siniestralidad global esperada para toda la cartera y los límites/deducibles del contrato de (rea)seguro que se desea cotizar. Se utiliza para cotizar contratos por riesgo con estructura de capas, particularmente para capas altas con poca incidencia de siniestros históricos.
- Modelo estocástico: consiste en desarrollar miles de simulaciones de posibles escenarios que afectan una cartera, aplicar los límites/deducibles del contrato de (rea)seguro que se desea cotizar y obtener el promedio de todos ellos. Nuestros modelos financieros son un ejemplo de modelo estocástico, que usualmente utilizamos para cotizar contratos. Estos se basan en distribuciones de frecuencia y severidad que parametrizamos utilizando la experiencia pasada o métodos por exposición.

Cotización mediante burning cost

Ejemplo contrato misceláneos - USD

Compañía	YoL	Siniestro Incurrido	Siniestro Indexado	Capa 1	Capa 2	Capa 3
COOPSEGUROS	2020	878,735	960,217	25,000	450,000	460,217
COLUMNA	2022	319,322	328,902	25,000	278,902	0
COLUMNA	2018	262,829	304,691	25,000	254,691	0
COLUMNA	2016	234,773	288,741	25,000	238,741	0
FUTURO	2018	179,828	208,470	25,000	158,470	0
TAJY	2022	154,900	159,547	0	109,547	0
TAJY	2019	102,165	114,988	0	64,988	0
FUTURO	2017	93,120	111,190	25,000	61,190	0
COLUMNA	2016	76,624	94,238	25,000	44,238	0
COOPSEGUROS	2022	88,888	91,555	25,000	41,555	0
COOPSEGUROS	2022	87,088	89,701	25,000	39,701	0
COLUMNA	2015	65,429	82,883	25,000	32,883	0
COLUMNA	2018	68,600	79,526	25,000	29,526	0

Row Labels	Siniestro Cedido Capa 1	Siniestro Cedido Capa 2	Siniestro Cedido Capa 3
2015	25,000	32,883	0
2016	92,027	282,980	0
2017	65,894	64,466	0
2018	154,971	492,162	0
2019	32,707	85,819	0
2020	91,101	466,405	460,217
2021	9,003	11,804	0
2022	138,316	498,634	0
Promedio 15-22	76,127	241,894	57,527

Tomamos los siniestros individuales históricos y los ajustamos por inflación. Al ajustar por inflación, algunos siniestros que están por debajo de la prioridad podrían afectar al contrato. Después aplicamos la estructura a los siniestros indexados y los agrupamos por año.

Сара	Límite		Deducible	Participantes
1	25,000	XS	25,000	All but Tajy
2	450,000	XS	50,000	All
3	500,000	XS	500,000	Fedpa,Tajy,Fut,Coop
Sublímite	300,000	XS	500,000	Futuro

El promedio de los siniestros cedidos históricos constituye una buena medida de los siniestros esperados para el año próximo. Si la cartera cambia mucho, es habitual ajustar las cifras a los cambios.

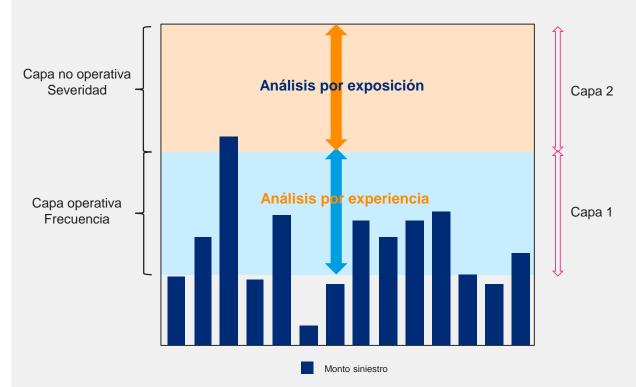
Es importante tener suficientes años de historia para que la media no se vea afectada por eventos inusuales. A la vez, tomar demasiados años puede no resultar representativo de la cartera actual, si ha habido cambios importantes.

Cuando existen pocos siniestros históricos o para capas altas, esta metodología no se suele utilizar. Aunque la capa no se haya visto afectada, podría serlo (el pasado no siempre es una buena guía para el futuro).

Curvas de Exposición

Introducción y alcance del método

El análisis por exposición es un método para calcular la **prima de riesgo** a la que se expone una compañía de seguros o reaseguros.


Sus componentes principales son:

- Riesgos de características similares, normalmente organizados en un perfil de riesgo. Solemos utilizar el perfil vigente o proyectado.
- Curvas de mercado que permiten obtener el siniestro esperado total a un contrato de (rea)seguros.
- Índice de siniestralidad de la cartera o por banda del perfil.

Se usan en:

- Contratos por riesgo y con una estructura en capas. No sirve para contratos catastróficos.
- Inferir distribuciones de frecuencia y severidad de siniestros para poder cotizar cualquier contrato utilizando modelos estocásticos.

Tarificación capas de (Rea)Seguro

A través de un análisis de **burning cost** (por experiencia), podemos cotizar las capas bajas de un WXL. La alta frecuencia de siniestros en este rango nos permite establecer conclusiones fiables.

En las capas superiores no existe frecuencia histórica de siniestros. El análisis por exposición nos permite determinar el coste en estos casos.

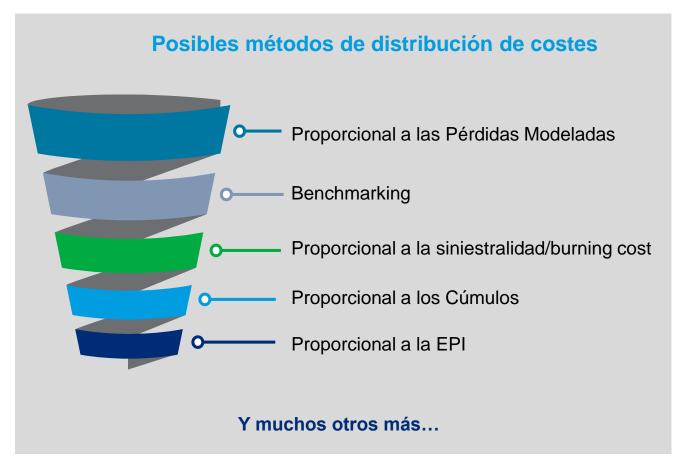
Ruth Salzmann fue la primera actuaria en desarrollar esta metodología (1963), que aplicó a riesgos residenciales de incendio.

Cotización mediante modelo estocástico

Estadísticas de los contratos no proporcionales - USD

Podemos extraer de Metarisk los resultados de los contratos, resumiendo diferentes métricas de las miles de simulaciones que generamos en nuestro modelo

Contract	Limit		Excess	To Earn	Exp. Reinst. Premium	Mean Loss	Std. Dev.	LoL	RoL	Entry RP (years)	Exit RP (years)	Multiple (Loading)	Risk Factor
Cat - Layer 1	90,000	XS.	60,000	22,650	0	15,418	35,974	17.13%	25.17%	5.2	7.5	1.47	20.10%
Cat - Layer 2	100,000	XS.	150,000	25,150	0	21,548	45,300	21.55%	25.15%	4.5	5.9	1.17	7.95%
Cat - Layer 3	100,000	XS.	250,000	45,371	0	42,335	63,658	42.34%	45.37%	2.7	3.1	1.07	4.77%
Cat - Layer 4	1,650,000	XS.	350,000	501,207	0	462,215	794,204	28.01%	30.38%	2.5	6.1	1.08	4.91%
Cat - Layer 5	3,000,000	XS.	2,000,000	419,373	50,597	362,634	975,114	12.09%	13.98%	6.1	12.2	1.16	5.82%
Cat - Layer 6	5,000,000	XS.	5,000,000	395,320	22,586	291,787	1,137,625	5.84%	7.91%	12.7	24.3	1.35	9.10%
Cat - Layer 7	6,000,000	XS.	10,000,000	232,386	7,120	186,589	1,012,008	3.11%	3.87%	25.5	42.1	1.25	4.53%
Cat - Layer 8	7,000,000	XS.	16,000,000	154,924	2,613	118,938	875,202	1.70%	2.21%	47.1	75.1	1.30	4.11%
Misc - Layer 1	25,000	XS.	25,000	210,696	0	140,230	61,173	560.92%	842.78%	1.0	1.0	1.50	115.19%
Misc - Layer 2	450,000	XS.	50,000	707,947	0	555,175	362,955	123.37%	157.32%	1.0	6.9	1.28	42.09%
Misc - Layer 3	500,000	XS.	500,000	103,837	0	21,157	81,758	4.23%	20.77%	9.0	212.3	4.91	101.13%
Motor - Layer 1	7,000	XS.	18,000	113,937	0	72,658	49,127	1037.98%	1627.67%	1.0	1.0	1.57	84.02%
Motor - Layer 2	125,000	XS.	25,000	531,009	0	528,313	337,851	422.65%	424.81%	1.0	4.2	1.01	0.80%
Motor - Layer 3	150,000	XS.	150,000	129,889	0	36,553	97,052	24.37%	86.59%	3.6	14.9	3.55	96.17%
Motor - Layer 4	100,000	XS.	300,000	29,043	0	9,837	43,804	9.84%	29.04%	14.2	22.5	2.95	43.85%
Motor - Layer 5	100,000	XS.	400,000	11,050	0	3,331	19,625	3.33%	11.05%	22.1	414.8	3.32	39.33%
Risk - Layer 1	50,000	XS.	50,000	13,994	0	3,724	12,485	7.45%	27.99%	7.6	23.5	3.76	82.26%
Risk - Layer 2	900,000	XS.	100,000	407,508	0	184,098	314,753	20.46%	45.28%	1.7	43.3	2.21	70.98%
Risk - Layer 3	2,000,000	XS.	1,000,000	109,511	2,510	46,185	238,688	2.31%	5.48%	15.3	247.7	2.37	26.53%
Risk - Layer 4	2,000,000	XS.	3,000,000	76,358	165	4,314	77,518	0.22%	3.82%	247.7	49,759.0	17.70	92.94%
	_,,	,,,,,	3,000,000	. 0,000		.,	,0.0	0.2270	0.0270				02.0 . / 0


El resultado promedio indica los siniestros que el reasegurador espera pagar de acuerdo a los modelos. La prima del contrato debería estar por encima de este monto si el reasegurador quiere cubrir sus costes y obtener unos beneficios.

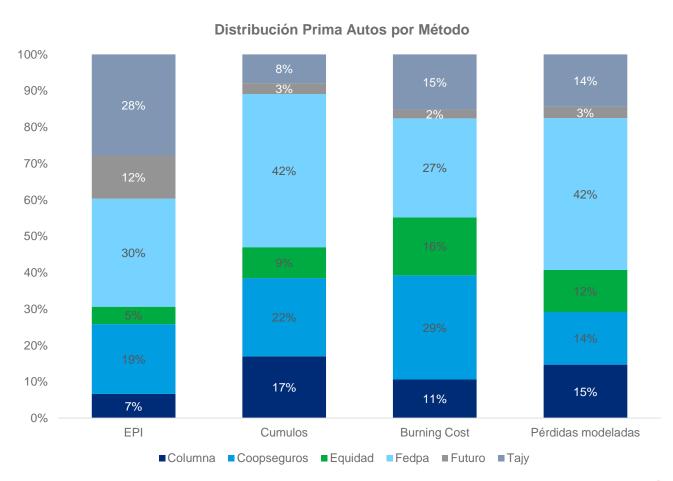
La desviación estándar establece una medida de la volatilidad (medida de la cantidad de riesgo) que el reasegurador está aceptando por cada capa. Cuanto mayor sea la volatilidad del contrato, mayor riesgo presenta.

El factor de riesgo se calcula como = (prima del contrato – siniestro promedio) / desviación estándar. Este factor representa el conjunto de recargos sobre las pérdidas esperadas como porcentaje de la volatilidad del contrato.

Distribución de Costes

Métodos para evaluar la contribución

Existen múltiples formas de repartir la prima de un contrato de reaseguro. La cuestión es hacerlo de **la manera más justa posible**, es decir, de acuerdo con el riesgo con el que cada compañía expone el contrato.


- ✓ Una compañía que haya cedido más siniestros a los contratos debería pagar más, pero a la vez se podría estar penalizando por haber tenido mala suerte un año... Si han existido cambios importantes en la cartera o la suscripción, puede ser que la experiencia pasada no sea representativa de la futura.
- ✓ La EPI podría no ser representativa de la cantidad de riesgo con el que cada compañía expone el contrato – estaríamos penalizando a las compañías con las tasas más altas.
- ✓ El riesgo catastrófico es muy diferente en cada territorio, de modo que una unidad de suma asegurada está mucho más expuesta a catástrofes naturales en unos países que otros. Utilizar los cúmulos no resultaría adecuado.
- ✓ Tanto los cúmulos como la prima no proporcionan una indicación del perfil de riesgos. Una compañía podría suscribir muchos riesgos muy pequeños. La exposición/prima total es muy grande pero ninguno de ellos podría dar a un siniestro lo suficientemente grande como para afectar el programa.
- ✓ Las pérdidas modeladas reflejan una visión más amplia de la cantidad de riesgo, pues tienen en cuenta: el perfil de la cartera, la siniestralidad, la exposición y la prima. Aunque no permite percibir efectos de mercado ni elementos no modelados.

¡Proceso complejo!

Existen muchas variables, algunas que se oponen entre sí. No solo el reparto de costes debería ser justo, sino también consistente. No sería adecuado cambiar la distribución de prima radicalmente de un año a otro, pues algunas compañías podrían sufrir considerablemente si sus costes de reaseguro aumentan desproporcionadamente.

Distribución de Costes – Ejemplo Autos

Métodos para evaluar la contribución

Existen múltiples formas de repartir la prima de un contrato de reaseguro. La cuestión es hacerlo de **la manera más justa posible**, es decir, de acuerdo con el riesgo con el que cada compañía expone el contrato.

- ✓ Una compañía que haya cedido más siniestros a los contratos debería pagar más, pero a la vez se podría estar penalizando por haber tenido mala suerte un año... Si han existido cambios importantes en la cartera o la suscripción, puede ser que la experiencia pasada no sea representativa de la futura.
- ✓ La EPI podría no ser representativa de la cantidad de riesgo con el que cada compañía expone el contrato – estaríamos penalizando a las compañías con las tasas más altas.
- ✓ El riesgo catastrófico es muy diferente en cada territorio, de modo que una unidad de suma asegurada está mucho más expuesta a catástrofes naturales en unos países que otros. Utilizar los cúmulos no resultaría adecuado.
- ✓ Tanto los cúmulos como la prima no proporcionan una indicación del perfil de riesgos. Una compañía podría suscribir muchos riesgos muy pequeños. La exposición/prima total es muy grande pero ninguno de ellos podría dar a un siniestro lo suficientemente grande como para afectar el programa.
- ✓ Las pérdidas modeladas reflejan una visión más amplia de la cantidad de riesgo, pues tienen en cuenta: el perfil de la cartera, la siniestralidad, la exposición y la prima. Aunque no permite percibir efectos de mercado ni elementos no modelados.

¡Proceso complejo!

Existen muchas variables, algunas que se oponen entre sí. No solo el reparto de costes debería ser justo, sino también consistente. No sería adecuado cambiar la distribución de prima radicalmente de un año a otro, pues algunas compañías podrían sufrir considerablemente si sus costes de reaseguro aumentan desproporcionadamente.

Cotización incremento LAA en Autos

Costo aproximado

Costo estimado de aumentar los límites agregados

Exceso de Pérdida de Autos

Capa	Límite		Deducible	Participantes	EPI	Prima Estimada	LAA	Prima Estimada	Prima Adicional	LAA
1	7,000	xs	18,000	Coop, Equidad, Futuro	10,851,151	113,937	210,000	116,537	2,599	250,000
2	125,000	XS	25,000	All	40,464,000	531,009	1,000,000	819,421	288,412	5,000,000
3	150,000	XS	150,000	All	40,464,000	129,889	450,000	138,565	8,676	900,000
Sublímite	100,000	XS	150,000	Futuro						
4	100,000	XS	300,000	Col, Equidad, Fedpa, Tajy	31,020,251	29,043	300,000	30,869	1,826	400,000
5	100,000	xs	400,000	Col, Fedpa	16,492,870	11,050	200,000	12,086	1,035	300,000
Total	482,000		18,000		40,464,000	814,929	2,160,000	1,117,477	302,548	6,850,000

¡Precios y límites orientativos!

Según el modelo de experiencia, serían necesarios 5 millones de dólares de límite agregado en la segunda capa para proporcionar la cobertura necesaria hasta el periodo de retorno 1 en 50. En la tercera capa, serían necesarios 900 mil dólares de límite agregado para llegar al periodo de retorno 1 en 100.

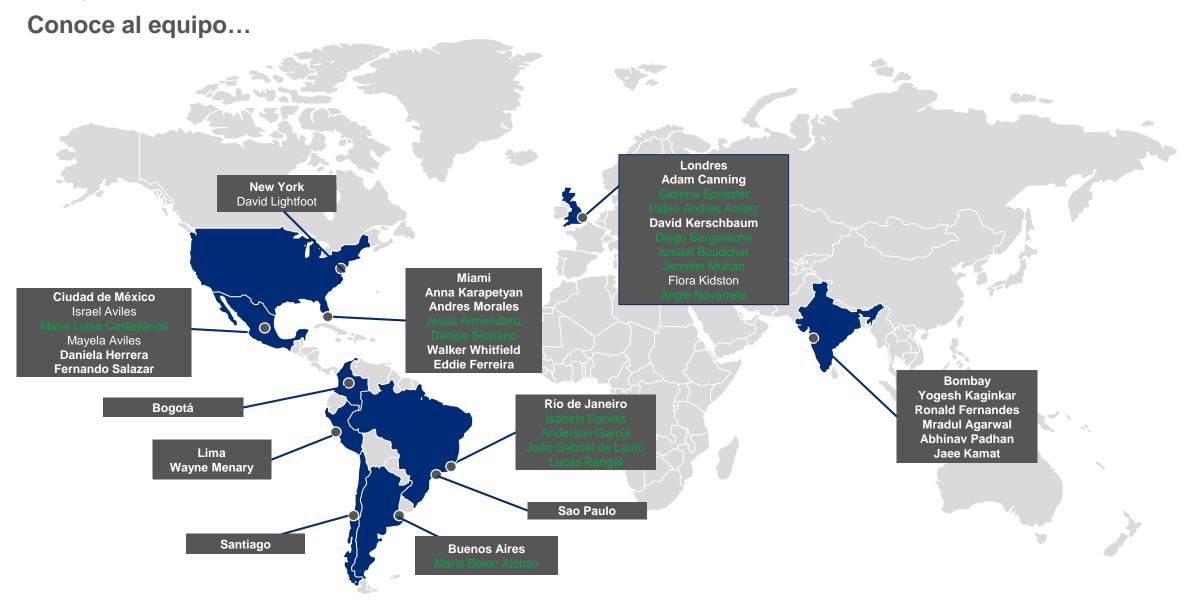
Un aumento en el límite agregado de cada capa podría acarrear un coste adicional para grupo LARG de 300 mil dólares.

Los límites agregados anteriores y los precios se basan en la cartera estimada para la renovación 23/24, sin haber sido consensuados con ningún reasegurador. Existe un apetito limitado entre sus reaseguradores por aumentar el número de reinstalaciones pre-pagadas, de modo que esta alternativa podría tener un riesgo de ejecución alto.

Tarificación por Exposición

Normalmente se utiliza el perfil actual, pero a veces se utiliza un perfil prospectivo si se anticipa un cambio significativo.

La tarificación por exposición no estima las pérdidas catastróficas en la capas de reaseguro - se deben utilizar modelos catastróficos o tarificación por experiencia.


Cambios en prima por nivel de retención y límite, código de clase o tipo de ocupación pueden tener un gran impacto a las perdidas estimadas en las capas de reaseguro; cambios en la proyección de la prima y siniestralidad pueden tener un impacto

% distribución del negocio en los perfiles es importante....no es importante el monto absoluto en \$s!

Equipo actuarial LAC

Guy Carpenter GSA Latin America & Caribbean

